Government and agreement: what's where why?

Balthasar Bickel
U. Zürich
Plan

1. Review typological evidence supporting the assumption that government and agreement are based on the same sense of “argument selection”:

 select subsets of arguments and subject them to some morphosyntactic treatment: case, agreement

2. Contrast this with the finding of strong differences in the worldwide distribution of government and agreement

3. Explain this by the proposal that the distribution of linguistic structures is defined through fine-grained and highly specific variables, and not through interlocked ‘systems’
Based on results from two projects

1. Typological variation in the processing of grammatical relations (DFG, 2006-2012), co-directed with Ina Bornkessel-Schlesewsky (U. Marburg)

2. EuroBABEL project on referential hierarchies in morphosyntax: differential agreement in Chintang (DFG, 2009-2012)

Cross-project team and contributors:

- Alena Witzlack-Makarevich
- Taras Zakharko
- Robert Schikowski
- Lennart Bierkandt
Argument selection by case and agreement

Key assumption in this work:

• Government and agreement always operate on subsets of arguments, e.g.
 • a case may only apply to \(\{S, A\} \) or only by \(\{S_{\text{exp}}, A_{\text{pass}}, G\} \)
 • an agreement form may only be triggered by \(\{S, A\} \) or only by \(\{\text{ARG}_{[1/2]}\} \)

• Let’s call this subsetting effect ‘selection’

• Typological question: any fundamental difference between the kinds of selections attested?

• Roles? Conditions of reference? Predicate class?

→ Look at ‘non-canonical’ patterns of agreement and case to explore this
Exhibit #1: ‘hierarchical agreement vs. case’

• Agreement with whatever is the highest argument

Icari Dargwa (Nakh-Daghestanian; Sumbatova & Mulatov 2003)

 1s-ERG M.[NOM] catch.m.PFV-PST=1s
 ‘I caught Murat.’

 M.[NOM] 1s[NOM] catch.m.PFV-PST=1s
 ‘Murad caught me.’
Exhibit #1: ‘hierarchical agreement vs. case’

• Hierarchical case: NOM in Philippine languages?
 a. *bumili* *ang=balak* ng=*isda* sa=*tindahan.*
 PFV.A.buy **NOM**=man OBL=fish LOC=store
 ‘The *man* bought fish at the/a store.’
 b. *binili* ng=*balak* *ang=isda* sa=*tindahan.*
 PFV.P.buy OBL=man **NOM**=fish LOC=store
 ‘The/a man bought the *fish* at the/a store.’

But perhaps case is assigned by the verb morphology, not the other way round.
Exhibit #1: ‘hierarchical agreement’ and ‘hierarchical case’

- A language just like Tagalog, but without the relevant verb morphology:

- Nusa Tenggara (a.k.a. Lesser Sunda Islands):
Exhibit #1: ‘hierarchical agreement’ and ‘hierarchical case’

Meno-Mené SasaK, Puyung variety (Austronesian; Shibatani 2008, 2009)

a. **Ali** \(wah=en \ kirim-an \ aku \ surat \)
 ‘Ali sent me a letter.’

b. **Aku** \(wah=en \ kirim-an \ surat \ isiq \ Ali \)
 I([-NOM] PERF=3 send-APPL letter ERG Ali
 ‘Ali sent **me** a letter.’
Exhibit #1: ‘hierarchical agreement’ and ‘hierarchical case’

- Only NOM can be relativized on (like Tagalog *ang*):

1. \(\text{Inaq } \mu = n \text{ kelor [sebie odaq]} \)

 mother.NOM PAST=3 eat chili green.ABS

2. \(\text{Mu}=n \text{ kelor [sebie odaq] isiq inaq} \)

 PAST=3 eat chili green.NOM ERG mother

 Both: ‘Mother ate green chili.’

3. \(\text{Sebie odaq [saq mu=n } \emptyset \text{ kelor isiq inaq]} \text{ besar} \)

 chili green [REL PAST=3 (NOM) eat ERG mother] big

4. \(\text{*Sebie odaq [saq inaq mu=n kelor } \emptyset \text{]} \text{ besar} \)

 chili green [REL mother.NOM PAST=3 eat (ABS)] big

 Both: ‘The green chili which mother ate was big.’

5. \(\text{dengan nine [saq } \emptyset \text{ kelor [sebie odaq]}]=no \text{ inaq=k} \)

 person female [REL (NOM) eat chili green]=that mother=1

6. \(\text{*dengan nine [saq mu=n kelor [sebie odaq] (isiq } \emptyset \text{]}=no \text{ inaq=ku} \)

 person female [REL PAST=3 eat chili green].NOM (ERG A)=that mother=1

 Both: ‘The woman who ate green chili is my mother.’
Exhibit #1: ‘hierarchical agreement’ and ‘hierarchical case’

• Why is this case?
 • dependent marker on arguments
 • represents the most prominent argument in syntax
 • does not add to, but replaces other case (ERG, ABS)

• Why is it hierarchical?
 • no diathesis, nor any other verb features matter; only argumenthood!
Exhibit #1: ‘hierarchical agreement’ and ‘hierarchical case’

• Contrast with passives:

a. **Aku** *wah=k te-empuk isiq Ali*
 I.**NOM** PERF=*1 PASS*-hit **BY** Ali

b. *Aku* *wah=en te-empuk isiq Ali*
 I.**NOM** PERF=*3 PASS*-hit **BY** Ali

 Both: ‘I got hit by Ali.’

c. **Aku** *wah=en *kirim-an* surat isiq Alii*
 I[**-NOM**] PERF=*3* send-APPL letter **ERG** Ali
 ‘Ali sent me a letter.’
Conclusion:

- No fundamental difference between agreement and case: both can be sensitive to referential hierarchies rather than (or in addition to) argument roles
Exhibit #2: ‘direct vs. inverse’ systems and argument scenarios

- Well-known from agreement systems, e.g.

Central Ojibwa (Algic; Rhodes 1976)

a. *n-waabam*-aa-Ø.
 1-see-**DIR**-3
 ‘I see him.’

b. *n-wābam*-igw-Ø.
 1-see-**INV**-3
 ‘He sees me.’
But also attest in case systems, though less commonly:

Yurok (Algic; Robins 1958:21)

a. \textit{ke?I yo? ki newo-?m.}
 2sNOM 3s[\textbf{NOM}] FUT see-2s>3s
 ‘You will see him.’

b. \textit{ke?I nek ki newo?h-pa?}.
 2sNOM 1s[\textbf{NOM}] FUT see-2>1s
 ‘You will see me.’

c. \textit{yo? nek-\textbf{ac} ki newo?h-pe?n}.
 3sNOM 1s-\textbf{ACC} FUT see-3s>1s
 ‘He will see me.’
Exhibit #2: ‘direct vs. inverse’ systems and argument scenarios

or on the A argument:

Umatilla Sahaptin (Plateau; Rigsby & Rude 1996)

a. îtreš i-tu.xnana yáamaš-na.
 man[-NOM] 3sSBJ-shot mule.deer-OBJ
 ‘The man shot a mule deer.’

b. îtreš-nim=nam i-q’ínu-ša.
 man-ERG=2s 3sSBJ-see-IPFV
 ‘The man sees you.’
Exhibit #2: ‘direct vs. inverse’ systems and argument scenarios

- A general pattern where case assignment depends on the complete argument scenario (found in only 5 out of 423 languages surveyed)

Languages shown on the map include: Awtuw, Yukagir (Kolyma), Yurok, Sahaptin (Umatilla), and Aguaruna.
Exhibit #2: ‘direct vs. inverse’ systems and argument scenarios

- Kolyma Yukaghir (Maslova 2003)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A_NOM P_ACC</td>
<td>A_NOM P_ACC</td>
<td>A_NOM P_NOM</td>
</tr>
<tr>
<td>A</td>
<td>A_NOM P_ACC</td>
<td></td>
<td>A_NOM P_NOM</td>
</tr>
<tr>
<td>3</td>
<td>A_NOM P_ACC</td>
<td>A_NOM P_ACC</td>
<td>A_NOM P_ACC</td>
</tr>
</tbody>
</table>

a. *met tolow kudede*
 I[NOM] deer[NOM] kill.TR.1s
 ‘I killed a deer.’

b. *met es’ie tet pulut-kele kudede-m*
 my father[NOM] your husband-ACC kill-TR.3s
 ‘My father has killed your husband.’
Exhibit #2: ‘direct vs. inverse’ systems and argument scenarios

- **Aguaruna** (Jivaroan; Overall 2009)

<table>
<thead>
<tr>
<th></th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1s</td>
</tr>
<tr>
<td>A</td>
<td>1s</td>
</tr>
<tr>
<td></td>
<td>1p</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

a. **hutii** ainau-ti atumî wai-hatu-ina-humi-i.
 1pNOM p-SAP 2pNOM see-1pP-p:IPFV-2p-DECL
 ‘You (pl.) see us.’

b. **nî** iîna antu-hu-tama-ka-aha-tata-wa-i.
 3sNOM 1pACC listen-APPL-1pP-INTS-p-FUT-3-DECL
 ‘He will listen to us.’
Exhibit #2: ‘direct vs. inverse’ systems and argument scenarios

Conclusion:

- No fundamental difference between case and agreement: both can be sensitive to the properties of co-arguments
Exhibit #3: Split-S

• Split-S (“semantic alignment”, “stative/active type”) is often hypothesized to be a feature of agreement much more than case (Klimov 1983, Nichols 1992)

• But common in case as well, e.g. Hindi:
 a. Rām āy-ā.
 R-[NOM] come-PP.MASC
 S
 ‘Ram came.’
 b. Rām-ne nahā-yā.
 R.-[ERG] bathe-PP.MASC.
 S
 ‘Ram bathed.’
 c. Dīpak-ko ṭhanḍī lag-rah-i.
 Deepak-[ACC] cold(F) feel-IPFV-PP.FEM
 S
 ‘Deepak feels cold.’

A question of semantics (experience vs. agency) or class sizes?
Exhibit #3: Split-S

- Walsh 1987, Bickel 2004, Evans 2004 etc.: experience a relevant factor in split-S agreement as well

- Nichols (2008): typological survey on 20 verb meanings:
 - see
 - forget
 - remember
 - hungry
 - thirsty
 - cold
 - glad/happy
 - sorry/regret
 - like
 - afraid/fear
 - angry
 - sneeze
 - breath
 - stand (up)
 - jump
 - fly (off)
 - fall (down)
 - shout/yell
 - weep/cry
 - laugh
No clear types, certainly not in terms of CASE vs AGREEMENT
Exhibit #3: Split-S

Conclusion:

- No fundamental difference between case and agreement: both can be sensitive to lexical predicate classes
Exhibit #4: extension to non-arguments

• Cases frequently extend to non-arguments, e.g. datives of interest, accusatives of extension etc. (Vincent & Börjars 2011)

• Also in agreement, e.g. Maithili (Indo-Aryan; Bickel et al. 1999)

a. *ham hunkā dekh-l-i-ainh.*
 1NOM 3hREM.DAT see-PST-1NOM-3hNONNOM
 ‘I saw himʰ.’

b. *ham okrā dekh-l-i-auk.*
 1NOM 3nhDAT see-PST-1NOM-2nhNONNOM
 ‘I saw himⁿʰ (who is related to youⁿʰ, cares about youⁿʰ, thinks about youⁿʰ etc...)’

▷ Again, no fundamental difference between case and agreement
Some languages go so far as to totally (or near-totally) identify the argument sets selected by agreement and case:

An Indo-Euroversal (Bickel 1999, 2004):

“The Indo-European Integrativity Principle:

If a construction is constrained by a syntactic pivot, this pivot is likely to be identified with an element listed in predicate-level valence frames (rather than directly in semantic argument structures)” (Bickel 2004:104)

i.e. sensitive to governed cases

(probably also valid for Nakh-Dagestanian)
Getting extreme: Indo-European

Case-based agreement in Maithili (IE)

a. (tū) bimār ch-æ?
 2nh NOM sick be-2nh NOM
 ‘Are you sick?’

b. (t̥rā) khusi ch-au?
 2nh DAT happy 2nh NONNOM
 ‘Are you happy?’

Non-case-based agreement in Belhare (ST)

a. (han) khar-e-ga i?
 2s NOM go-PST-2sS Q
 ‘Did you go?’

b. (han-na) un lur-he-ga i?
 2s-ERG 3sNOM [3sA-]tell-PST-2sA Q
 ‘Did you tell him/her?’

c. ciya (han-na)ha n-niũa tis-e-ga i?
 tea.NOM 2s GEN 2sPOSS-mind please-PST-2sA Q
 ‘Did you like the tea?’
Getting extreme: Indo-European

- Effect often so strong that one needs to define agreement in terms of case, e.g. Hindi:

 “The verb agrees with the highest ARG associated with NOM case.” (Mohanan 1994: 105)

 R.(M)[NOM] bread(sF)[NOM] eat-3s-FUTsM
 ‘Ravi will eat some bread.’

b. Ravī=n̄e roṭī khā-yī.
 R.(M)=ERG bread(sF)[NOM] eat-PST.PTCPsF
 ‘Ravi ate some roti.’

c. Ravī=n̄e roṭī=k̄o khā-yā.
 R.(M)=ERG bread(sF)=ACC eat-PST.PTCPsM
 ‘Ravi ate the roti.’
Getting extreme: Indo-European

- or define all grammatical relations in terms of case (e.g. Pāṇinī; or in modern linguistics, e.g. Reis 1982 on German)

Hindi (Kachru et al. 1976, Bickel & Yādava 2000)

a. \(\text{un}=k o_i \quad m aĩ=ne \quad [\emptyset_i \quad \text{dar-ā} \quad h u-ā] \quad pā- yā. \)

 3SG.OBL=DAT 1SG.OBL=ERG NOM fear-P.SG.M AUX-P.SG.M find-PT.SG.M

b. * \(\text{un}=k o_i \quad m aĩ=ne \quad [\emptyset_i \quad \text{dar} \quad \text{lag-ā} \quad h u-ā] \quad pā- yā. \)

 3SG.OBL=DAT 1SG.OBL=ERG DAT fear[NOM] feel-P.SG.M AUX-P.SG.M find-PT.SG.M

‘I found him afraid.’

German

a. \(\text{Sie} \quad \text{sah} \quad \text{ihn}_i \quad [\emptyset_i \quad \text{müde werd}-en]. \)

 3SG.F:NOM see:3SG.PT 3SG.M:ACC NOM tired become-INF

‘She saw him getting tired.’

b. * \(\text{Sie} \quad \text{sah} \quad \text{ihn}_i \quad [\emptyset_i \quad \text{schwindel}-n]. \)

 3SG.F:NOM see:3SG.PT 3SG.M:ACC DAT feel.dizzy-INF

\text{Intended}: ‘She saw him feeling dizzy.’

- A trend with exceptions (cf. Bickel 2004 for Indo-Aryan exceptions; Barðdal & Eythórsson 2011 for Germanic exceptions)
Contrast with other families, e.g. Sino-Tibetan

Belhare (Bickel 2004)

 NOM play-INF NEG-be.permitted-NPT-NEG-2[SG.S]
 ‘You shouldn’t play.’

 ERG NOM fear-INF NEG-be.permitted-NPT-NEG-2[SG.S]
 ‘You shouldn’t be feared.’ (‘[s/he/they/I] shouldn’t fear you.’)
 Not: ‘You shouldn’t fear [him/her/it/them]’

 1SG.NOM NOM sour-INF [3SG.S-]be.permitted-NPT
 ‘I like [the beer] sour.’ (literally, ‘[the beer] may be sour to me.’)

 NOM beer.NOM sour-INF may-NPT-1SG.S
 Intended: ‘I like [the beer] sour.’ (literally, ‘to me, [the beer] may be sour.’)
Interim summary

• No evidence that there is a fundamental difference in the kinds of sets selected by government vs. agreement

• Reasonable assumption that it’s argument subsets throughout,
 • constrained by reference (e.g. A\([1/2]\) vs. A) of arguments and co-arguments
 • split by clause, TAM, lexical predicate classes
 • etc.

• Moreover, in some languages (Indo-European, Nakh-Daghestanian), agreement is sensitive to case government
 ▶ expect government and case to show related distributions

BUT:
Distributional difference #1: presence of case and agreement

- Nichols 1992: head-marking vs. dependent-marking is distributed (macro-)areally, e.g.

- Any kind of A and P agreement (including pronominal agreement) and any kind of A≠P distinction of NPs (including DOM, DAM), $N=303:

- rich case
- rich agreement
- both
- neither

→ some trend towards complementary distribution?
A complementary distribution would support the “DuPonceau tradition” of analyzing

- “rich” agreement as absorbing argument positions and
- thereby shielding NPs off from case government

If so, expect that

- languages with rich agreement preferentially loose/don’t develop case, and
- languages with rich case preferentially loose/don’t develop rich agreement

Test this.
Methodological intermezzo: the Family Bias Method

• Typological distributions are the product of diachronic developments

• Test whether diachronic developments are influenced by AREAS or UNIVERSALS or both

• Estimate these developments via the extent of distributional biases within language families, given some condition:
 • if X is subject to a developmental trend in a family (because of AREAS or UNIVERSALS), the family will show a distributional bias in X; if not, no trend!
 • estimate family biases statistically within (sufficiently large) families
 • extrapolate estimates to smaller families and isolates (using fairly standard Baysian techniques from other disciplines)
“diverse” can result from an imperfect bias in either direction, depending on the proto-language

- no evidence on hypotheses about diachronic trends
Distributional difference #1: presence of case and agreement

Results (via AIC reduction of loglinear models):

• no significant interactions between anything

• no evidence for a diachronic bias in rich agreement depending on the presence of rich case or on the macroarea
Distributional difference #1: presence of case and agreement

Results (via AIC reduction of loglinear models):

- no evidence for a diachronic bias in case dependent on the presence of rich agreement
- CASE × AREA is borderline significant ($G^2 = 6.88$, $p = .076$): **Eurasia**! (cf. Bickel & Nichols 2006)
Distributional difference #1: presence of case and agreement

- Conclusion: no evidence for any universal diachronic interaction between rich case (A≠P) and rich agreement (multiple agreement).

- Bad news for the DuPonceau tradition

- But perhaps both are conditioned by a third variable: word order, as per Hawkins’s theory (2004):
 - rich case is favored by V-final order
 - rich agreement is disfavored by V-final order
 - this would suggest partial, but not complete complementarity
 - test this, again controlling for macroareas
Distributional difference #1: presence of case and agreement

Results (via AIC reduction of loglinear models):
• no three-way interaction
• diachronic bias towards case in V-final groups ($G^2=6.63, \ p<.001$)
• and also dependent on macro-areas ($G^2=9.39, \ p=.02$): **Eurasia!**
Distributional difference #1: presence of case and agreement

Results (via AIC reduction of loglinear models):
• no evidence for a bias against rich agreement in V-final groups ($G^2 = .27, p = .60$)
• perhaps diachronic bias in rich agreement dependent on macro-areas ($G^2 = 7.15, p = .067$): **Circum-Pacific!** (Nichols 1992)
Distributional difference #1: presence of case and agreement

Conclusion:

• While both the presence of agreement and case depends on areal processes,
 • the presence of case diachronically also depends on word order, but
 • the presence of rich agreement seems independent of word order (*pace* Hawkins 2004)

• Suggests that the distribution of case and agreement is subject to different processes, despite their structural similarity!
Discussion

- This finding has a natural interpretation from a processing perspective:
 - the presence of case is a plausible facilitator when processing NP argument roles of initial NPs

 NP NP V vs. V NP NP

- but agreement is of much less help when processing argument roles and it doesn’t make a difference whether the agreement markers occur early or late:

 V-agr NP NP vs. NP NP V-agr
Discussion

• The finding also fits with independent evidence on different principles underlying the development of agreement and case.

• A plausible principle underlying the development of rich agreement (Givón 1976 and many others since):

 cliticization of highly topical arguments (or: old information exponents, i.e. pronouns)
Discussion

Prediction from this: to the extent that highly topical arguments tend to be in S or A role (DuBois 1987, 2003), expect high proportion of S=A alignment:

Results:
no interaction and no area effect, but significant effect of S=A > S≠A bias ($G^2 = 23.08$, $p < .001$)
Discussion

- Now, we also find a preference for S=A in case:

Results:

- again no evidence for an interaction, but significant
 S=A > S≠A bias ($G^2=95.10$, $p<.001$) and significant
 area ($G^2=9.71$, $p<.021$) effect
Discussion

• But this is unlikely to be due to the same topicality effect as the S=A bias in agreement

• If the S=A bias in case would be motivated by topicality (or: old information), we’d make the wrong predictions (under Zipfian assumptions):

 • Topical NPs are often (mostly) dropped, so an overt NP in A function should receive special marking: \{A\}

 • Overt (non-topical, new information) NPs occur mostly in S or P function, and so should prefer zero-marking for \{S,P\}

 • together, this would lead to \{A\} \neq \{S,P\}!
Discussion

An alternative theory (Bornkessel-Schlesewsky & Bickel 2010):

• Small anti-P effects from processing initial unmarked NPs lead to
 • preservation of S=A alignment of NPs (if it’s already in place) or
 • development of S=A alignment of NPs (if it’s not there yet)
Discussion

• Processing local ambiguities:

\[\text{dass Peter Lehrerinnen} \]
that Peter: \(\times \) A/P? teachers: A/P?

\(\text{mögen} \) [NP1 was P!]
like
\(\text{mag} \) [NP1 was A!]
likes

• The brain tends to first assume that an unmarked (lexically unconstrained) NP1 is S or A, but not P

• If NP1 later (e.g. at the verb) turns out to be P, this costs something

▶ Anti-P effect in the ERP signal
minimizing dependency expectations (Bornkessel-Schlesewsky et al. 2009)
Case Study 2: biases in case alignment

- Anti-P effect demonstrated also in
 - English (Frazier 1987)
 - Dutch (Frazier 1987)
 - Italian (de Vincenzi 1991)
 - Turkish (Demiral et al. 2008/Cogn.)
 - Hindi (Choudhary et al. 2010/CUNY)

+ various experimental techniques: behavioural and neuroscientific measures
+ independent of animacy, frequency, topicality
Supports the proposal that the development of agreement is driven by different principles than the development of case

- grammaticalization in the case of agreement
- (re)analysis in processing in the case of case
Conclusions

• Case and agreement doesn’t develop as an interlocked system, as IE (and much modeling based on IE) would let us expect

• Instead, case and agreement develop independently, through independent processes that affect always just specific aspects of these phenomena.
Conclusions

• This requires analysis in terms of a **Multivariate Typology**:
 • selector type: case, various types of agreement, raising, conjunction reduction etc. (all that matters for GRs)
 • set of roles that is selected (i.e. alignment)
 • referential properties
 • co-argument conditions
 • lexical predicate classes
 • clause type (main, dependent)
 • etc.